Monitoring your Flask application using OpenTelemetry


In this article, we will use OpenTelemetry to instrument a sample Flask app. Flask is one of the most popular web application frameworks of Python. It consists of Werkzeug WSGI toolkit and Jinja2 template engine.

Instrumentation is one of the biggest challenge engineering teams face when starting out with observability. Instrumenting a distributed application architecture is not easy. Applications now have distributed services as well as distributed teams that might be using multiple programming languages and numerous frameworks and libraries.

OpenTelemetry is the leading open-source standard that is solving the problem of instrumentation. It is currently an incubating project under the Cloud Native Computing Foundation.

It is a set of tools, APIs, and SDKs used to instrument applications to create and manage telemetry data(Logs, metrics, and traces). It aims to make telemetry data(logs, metrics, and traces) a built-in feature of cloud-native software applications.



Why use OpenTelemetry?

As might be clear by now that OpenTelemetry helps you to generate telemetry data. You still need a backend to analyze, store and visualize that data. By design, OpenTelemetry is vendor-agnostic. And that’s one of the biggest advantages of using OpenTelemetry. It can export data in multiple formats which you can send to a backend of your choice.

In this article, we will use SigNoz as a backend. SigNoz is an open-source APM that can be used for both metrics and distributed tracing.

Let’s get started and see how to use OpenTelemetry for a Flask application.



Running a Flask application with OpenTelemetry

OpenTelemetry is a set of tools, APIs, and SDKs used to instrument applications to create and manage telemetry data(logs, metrics, and traces).



Installing SigNoz

You can get started with SigNoz using just three commands at your terminal if you have Docker installed. You can install Docker from its official website.

git clone https://github.com/SigNoz/signoz.git
cd signoz/deploy/
./install.sh

You will have an option to choose between ClickHouse or Kafka + Druid as a storage option. Trying out SigNoz with ClickHouse database takes less than 1.5GB of memory, and for this tutorial, we will use that option.

Deployment Docs

When you are done installing SigNoz, you can access the UI at: http://localhost:3000

The application list shown in the dashboard is from a sample app called HOT R.O.D that comes bundled with the SigNoz installation package.

SigNoz dashboard showing application listSigNoz Dashboard



Getting a sample Flask application

Prerequisites

  1. Python 3.4 or newer

    Download the latest version of Python.

  2. MongoDB

    Below are the download links for different OS:

    MacOS

    Linux

    Windows

Running sample Flask app

We will be using the Flask app at this Github repo.

Clone sample Flask app repository and go to the root folder

   git clone https://github.com/SigNoz/sample-flask-app.git
   cd sample-flask-app

Check if the app is running

   python3 app.py

You can now access the UI of the app on your local host: http://localhost:5000/

Sample flask appSample flask application running on local host



Instrumenting the Flask application with OpenTelemetry

Opentelemetry Python instrumentation installation

The app folder contains a file called requirements.txt, which contains all the necessary requirements to set up OpenTelemetry Python instrumentation. Make sure your path is updated to the root directory of your sample app and run the following command:

   pip3 install -r requirements.txt

If it hangs while installing grpcio during pip3 install opentelemetry-exporter-otlp then follow below steps as suggested in this stackoverflow link.

Install application-specific packages

This step is required to install packages specific to the application. Make sure to run this command in the root directory of your installed application. This command figures out which instrumentation packages the user might want to install and installs it for them:

   opentelemetry-bootstrap --action=install

Passing the necessary environment variables

You’re almost done. In the last step, you just need to configure a few environment variables for your OTLP exporters. Environment variables that need to be configured:

   OTEL_RESOURCE_ATTRIBUTES=service.name=flaskApp OTEL_METRICS_EXPORTER=none OTEL_EXPORTER_OTLP_ENDPOINT="http://<IP of SigNoz>:4317" opentelemetry-instrument python3 app.py

Ip of SigNoz can be replaced with localhost in this case. Hence, the final command becomes:

OTEL_RESOURCE_ATTRIBUTES=service.name=flaskApp OTEL_METRICS_EXPORTER=none OTEL_EXPORTER_OTLP_ENDPOINT="http://localhost:4317" opentelemetry-instrument python3 app.py

And congratulations! You have now instrumented your flask application with OpenTelemetry.

Below you can find your Flask_app in the list of applications being monitored on SigNoz dashboard.

Flask app in the list of applicationsFlask app in the list of applications monitored by SigNoz



Open-source tool to visualize telemetry data

SigNoz makes it easy to visualize metrics and traces captured through OpenTelemetry instrumentation.

SigNoz comes with out of box RED metrics charts and visualization. RED metrics stands for:

SigNoz charts and metricsMeasure things like application latency, requests per sec, error percentage and see your top endpoints with SigNoz.

You can then choose a particular timestamp where latency is high to drill down to traces around that timestamp.

List of traces on SigNoz dashboardView of traces at a particular timestamp

You can use flamegraphs to exactly identify the issue causing the latency.

Flamegraphs used to visualize spans of distributed tracing in SigNoz UIView of traces at a particular timestamp

You can also build custom metrics dashboard for your infrastructure.

Custom metrics dashboardYou can also build a custom metrics dashboard for your infrastructure



Conclusion

OpenTelemetry makes it very convenient to instrument your Flask application. You can then use an open-source APM tool like SigNoz to analyze the performance of your app. As SigNoz offers a full-stack observability tool, you don’t have to use multiple tools for your monitoring needs.

You can try out SigNoz by visiting its GitHub repo 👇

SigNoz GitHub repo

If you have any questions or need any help in setting things up, join our slack community and ping us in #help channel.

SigNoz Slack community

If you want to read more about SigNoz 👇

Golang Aplication Monitoring with OpenTelemetry and SigNoz

OpenTelemetry collector – complete guide

Source: DEV Community

November 20, 2021
Category : News
Tags: monitoring | opentelemetry | performance | python

Leave a Reply

Your email address will not be published. Required fields are marked *

Sitemap | Terms | Privacy | Cookies | Advertising

Senior Software Developer

Creator of @LzoMedia I am a backend software developer based in London who likes beautiful code and has an adherence to standards & love's open-source.